Complex numbers

$$
z=a+b i \in \mathbb{C}, \quad \operatorname{Re}(z)=a \quad \operatorname{In}(\varepsilon)=b
$$

Def Magnitude: $|z|=\sqrt{z \cdot \bar{z}}=\sqrt{a^{2}+b^{2}}$
argument: $\operatorname{Arg}(z)=\arctan (\operatorname{Rcz} / \operatorname{Im} z)$

Def Polar form: $z=r \cdot e^{i \theta}$

$$
|z|=r \quad \operatorname{Arg}(z)=\theta
$$

(The n-th) Roots of unity : solutions of $z^{n}=1$ in σ.

$$
\omega_{n}:=e^{\frac{2 \pi}{n} i}, r_{\text {Dots }}=\left\{1, \omega_{n}, \omega_{n}^{2}, \cdots, \omega_{n}^{n-1}\right\} \quad(n \geqslant 2)
$$

Prop $z^{n}=(z-1)\left(z-w_{n}\right) \cdots\left(z-w_{n}^{n-1}\right)$

$$
\begin{aligned}
& \cdot \omega_{n} \cdot w_{n}^{2} \cdots w_{n}^{n-1}=(-1)^{n+1} \\
& \cdot 1+w_{n}+w_{n}^{2}+\cdots+w_{n}^{n-1}=0 \quad(n \geq 2)
\end{aligned}
$$

Complex functions
$f: \mathbb{C} \rightarrow \mathbb{C}, \quad z=x+y i$
f also have a real and imaginary part.

$$
f(z)=\underbrace{\operatorname{Re}(f(z))}_{u(x, y)}+\frac{\operatorname{Im}(f(z))}{v(x, y)} \cdot i
$$

$$
\begin{aligned}
u, v: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
f(z) & =u(x, y)+i v(x, y)
\end{aligned}
$$

eng

$$
\begin{aligned}
& f(z)=z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i \\
& u(x, y)=x^{2}-y^{2} \\
& v(x, y)=2 x y
\end{aligned}
$$

Def (Important functions) $z=r e^{i \theta}, \quad \partial \in(-\pi, \pi]$

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\cos z & =\frac{e^{i z}+e^{-i z}}{2} \\
\sin z & =\frac{e^{i z}-e^{-i z}}{2} \\
\log (z) & =\ln r+i \theta \\
& =\ln |z|+i \operatorname{Arg}(z)
\end{aligned}
$$

Derivatives

Def $f: \mathbb{C} \rightarrow \mathbb{C}$ is differentiable at $z \in \mathbb{C}$ if the limit

$$
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
$$

exists.

$$
\left(\left(z^{n}\right)^{\prime}=n z^{n-1}, \quad(\sin z)^{\prime}=\cos z, \cdots\right)
$$

egg $f(z)=\bar{z}$ is not differentiable at $z=0$.

$$
\begin{aligned}
& h=a+b i \quad \bar{h}=a-b i \\
& \frac{f(h)-f(0)}{h}=\frac{\bar{h}}{h}=\left[\begin{array}{cc}
1 & b=0 \\
-1 & a=0
\end{array}\right.
\end{aligned}
$$

Def $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function at $z \in \mathbb{C}$ if there is a nbhd of z Sit f is differentiable on V.

$$
z=x+i y
$$

Thy $f: c \rightarrow \mathbb{C}, \quad f(z)=u(x, y)+i v(x, y)$
is holomorphic at z if u and v satisfy the following Cauchy -Riemann equation:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text { at }(x, y) \text {. }
$$

In this case, v is called a harmonic conjugate of u.

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Thu f is holomorphic on $U \Rightarrow f$ is analytic on U
L) difff ∞ coly many times

Integrations \& can be represented by a power
Def C : a curve in © parametrized by series

$$
z(t)=x(t)+i y(t) \quad a \leq t \leq b
$$

$f: \mathbb{C} \rightarrow \mathbb{C}$ continuous
The path integral of f along C is

$$
\int_{c} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Thu $F, f: \mathbb{C} \rightarrow \mathbb{C} \quad F^{\prime}(z)=f(z)$ on $U \subseteq \mathbb{C}$.
If C is a curve in U from z_{1} to z_{2}. then

$$
\int_{C} f(z) d z=f\left(z_{2}\right)-f\left(z_{1}\right)
$$

Thu (Cauchy) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function on © aud C is a closed curve. Then

$$
\int_{c} f d z=0
$$

Def $f: \mathbb{C} \rightarrow \mathbb{C}$. f is holomorphic on $\mathcal{U} \backslash\{p$? Then p is a removable singularity: if there is $\tilde{f}: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic on U (om n-th order) s.t. $\tilde{f}(z)=f(z)$ on $U \backslash\{p\}$
pole: if there is a holomorphic function g on \cup sit $g(z)=(z-p)^{n} f(z)$ for $z \in U \backslash\{p\}$
essential singularity if it is neither removable nor a pole.
e.g $f(z)=\left[\begin{array}{ll}z & z \neq 0 \\ 1 & z=0\end{array} \quad 0\right.$ is a removable singularity
$g(z)=\frac{1}{2} \quad z \neq 0 \quad 0$ is a 1st order pole
$h(z)=\cos \left(\frac{1}{z}\right) \quad 0$ is an essential singularity

Def f:U\ipt $\rightarrow \mathbb{C}$ is holomorphic
P is an n-th order pole. The residue of f at p is

$$
\operatorname{Res}(f, p)=\frac{1}{(n-1)!} \lim _{z \rightarrow p} \frac{d^{n-1}}{d z^{n-1}}\left[(z-p)^{n} f(z)\right]
$$

Thu $f: \mathbb{C} \rightarrow \mathbb{C}$. holomorphic on $u \backslash\left\{\overparen{\left.a_{11}, \cdots, a_{k}\right\}} \underset{\text { poles }}{\text { p }}\right.$ is a closed curve in U w/ positive orientation (counter-clockwise)

$$
\oint_{c} f(z) d z=2 \pi i \sum \operatorname{Res}\left(f, a_{k}\right)
$$

Def A Laurent expansion for $f: \mathbb{C} \rightarrow \mathbb{C}$ at P :

$$
f(z)=\sum_{n=-\infty}^{\infty} C_{n}(z-p)^{n}
$$

eng $f(z)=\frac{5}{(1-z)(2 i-z)} \quad|<|z|<2$
(1). partial fraction: $f(z)=\frac{1+2 i}{2 i-z}-\frac{1+2 i}{1-z}$
(2) Use $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ for $|z|<1$:

$$
\begin{aligned}
& \frac{1}{2 i-z}=\frac{1}{2 i} \cdot \frac{1}{1-(z / 2 i)}=\frac{1}{2 i} \sum_{n=0}^{\infty}(z / 2 i)^{n} \quad \text { for }|z|<2 \\
& \frac{1}{1-z}=-\frac{1}{z} \cdot \frac{1}{1-1 / z}=-\frac{1}{z} \sum_{n=6}^{\infty} \frac{1}{z^{n}}=-\sum_{n=1}^{\infty} \frac{1}{z^{n}}|z|>1 \\
& \therefore f(z)=(1+2 i) \cdot\left(\frac{1}{2 i} \sum_{n=0}^{\infty}\left(\frac{z}{2 i}\right)^{n}-\frac{1}{z} \sum_{n=1}^{\infty} \frac{1}{z^{n}}\right)
\end{aligned}
$$

